首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   49221篇
  免费   17515篇
  国内免费   164篇
  2023年   84篇
  2022年   98篇
  2021年   610篇
  2020年   2986篇
  2019年   4661篇
  2018年   4871篇
  2017年   4786篇
  2016年   4465篇
  2015年   4265篇
  2014年   4396篇
  2013年   4984篇
  2012年   3988篇
  2011年   4325篇
  2010年   3640篇
  2009年   2473篇
  2008年   2672篇
  2007年   2142篇
  2006年   2083篇
  2005年   1778篇
  2004年   1434篇
  2003年   1533篇
  2002年   1301篇
  2001年   967篇
  2000年   503篇
  1999年   379篇
  1998年   140篇
  1997年   119篇
  1996年   81篇
  1995年   118篇
  1994年   77篇
  1993年   98篇
  1992年   94篇
  1991年   49篇
  1990年   44篇
  1989年   50篇
  1988年   44篇
  1987年   47篇
  1986年   40篇
  1985年   47篇
  1984年   72篇
  1983年   41篇
  1982年   58篇
  1981年   43篇
  1980年   72篇
  1979年   40篇
  1978年   14篇
  1977年   15篇
  1976年   17篇
  1975年   13篇
  1973年   24篇
排序方式: 共有10000条查询结果,搜索用时 359 毫秒
991.
We analyzed the global genetic variation pattern of Capsella bursa‐pastoris (Brassicaceae) as expressed in allozymic (within‐locus) diversity and isozymic (between‐locus) diversity. Results are based on a global sampling of more than 20,000 C. bursa‐pastoris individuals randomly taken from 1,469 natural provenances in the native and introduced range, covering a broad spectrum of the species’ geographic distribution. We evaluated data for population genetic parameters and F‐statistics, and Mantel tests and AMOVA were performed. Geographical distribution patterns of alleles and multilocus genotypes are shown in maps and tables. Genetic diversity of introduced populations is only moderately reduced in comparison with native populations. Global population structure was analyzed with structure, and the obtained cluster affiliation was tested independently with classification approaches and macroclimatic data using species distribution modeling. Analyses revealed two main clusters: one distributed predominantly in warm arid to semiarid climate regions and the other predominantly in more temperate humid to semihumid climate regions. We observed admixture between the two lineages predominantly in regions with intermediate humidity in both the native and non‐native ranges. The genetically derived clusters are strongly supported in macroclimatic data space. The worldwide distribution patterns of genetic variation in the range of C. bursa‐pastoris can be explained by intensive intra‐ and intercontinental migration, but environmental filtering due to climate preadaption seems also involved. Multiple independent introductions of genotypes from different source regions are obvious. “Endemic” genotypes might be the outcome of admixture or of de novo mutation. We conclude that today's successfully established Capsella genotypes were preadapted and found matching niche conditions in the colonized range parts.  相似文献   
992.
Researchers reexamining the relationship between restoration science and practice report a continuing scientist‐practitioner gap. As a land manager with scientific training, I offer my perspective of the chasm and describe a restoration practice infused with as much science as the realities of limited budget and time allow. The coastal sage scrub (CSS) restoration project at Starr Ranch, a 1,585 ha Audubon preserve in southern California, combines non‐chemical invasive species control, restoration, and applied research. Our practices evolve from modified scientific approaches and the scientific literature. Results from experiments with non‐optimum replication (on effects of seed rates, soil tamping, and timing of planting) nonetheless had value for management decisions. A critical practice came from academic research that encouraged cost‐effective passive restoration. Our passive restoration monitoring data showed 28–100% total native cover after 3–5 years. Another published study found that restoration success in semiarid regions is dependent on rainfall, a finding vital for understanding active restoration monitoring results that showed a range of 0–88% total native cover at the end of the first season. Work progresses through a combination of applied research, a watchful eye on the scientific literature, and “ecological intuition” informed by the scientific literature and our own findings. I suggest that it is less critical for academic scientists to address the basic questions on technique that are helpful to land managers but rather advocate practitioner training in methods to test alternative strategies and long‐term monitoring.  相似文献   
993.
An accepted criterion for measuring the success of ecosystem restoration is the return of biodiversity relative to intact reference ecosystems. The emerging global carbon economy has made landscape‐scale restoration of severely degraded Portulacaria afra (spekboom)‐dominated subtropical thicket, by planting multiple rows of spekboom truncheons, a viable land‐use option. Although large amounts of carbon are sequestered when planting a monoculture of spekboom, it is unknown whether this is associated with the return of other thicket biodiversity components. We used available carbon stock data from degraded, restored, and intact stands at one site, and sampled carbon stocks at restored stands at another site in the same plant community. We also sampled plant community composition at both sites. The total carbon stock of the oldest (50 years) post‐restoration stand (250.8 ± 14 t C ha?1) approximated that of intact stands (245 t C ha?1) and we observed a general increase in carbon content with restoration age (71.4 ± 24 t C ha?1 after 35 and 167.9 ± 20 t C ha?1 after 50 years). A multiple correspondence analysis separated degraded stands from stands under restoration based on ground cover, floristic composition, and total carbon stock. Older post‐restoration and intact stands were clustered according to woody canopy recruit abundance. Our results suggest that spekboom is an ecosystem engineer that promotes spontaneous return of canopy species and other components of thicket biodiversity. The spekboom canopy creates a cooler micro‐climate and a dense litter layer, both likely to favor the recruitment of other canopy species.  相似文献   
994.
Land‐use legacies associated with agriculture, such as increased soil fertility and elevated soil pH, promote invasions by non‐native plant species on former agricultural lands. Restoring natural soil conditions (i.e. low fertility and low pH) may be an effective, long‐term method to control and reduce the abundance of non‐native and ruderal species that invade abandoned agricultural lands. In this study, we examined how soil manipulation treatments of lowering soil fertility with carbon additions and lowering soil pH by applying sulfur affect non‐native and ruderal native plant species abundance in two former citrus groves in central Florida. Non‐native plant biomass was removed by one of two methods (tilling or topsoil removal), and was combined with a soil amendment of sulfur, carbon, sulfur + carbon, or none. The biomass removal treatments significantly decreased non‐native abundance, with topsoil removal as the most effective. Carbon additions did not affect soil fertility or vegetation. Sulfur and sulfur + carbon additions significantly decreased soil pH in both groves for at least 1 year post‐treatment; however, we did not see a significant vegetation response. Overall, our results suggest that removing vegetation by tilling and topsoil removal is an effective method for reducing non‐target species cover. Although we did not see a response of vegetation to our treatments, we were able to restore the initial soil characteristics, which can be a first step toward complete restoration.  相似文献   
995.
Disturbed natural areas frequently experience invasion by introduced plant species that can reduce native biodiversity. Biological control can suppress these introduced species, but without restoration another introduced species can invade. Integration of biological control with concurrent revegetation can both aid in weed reduction via interspecific plant competition and establish a restored native plant community. This 3‐year study investigated an integrated approach to controlling the introduced annual Mile‐a‐minute weed (Persicaria perfoliata [L.] H. Gross [Polygonaceae]) using the biocontrol weevil Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) and restoration planting using a native seed mix. A fully factorial design tested weevils and seeding, separately and together, using insecticide to eliminate weevils. The weevils together with the native seed mix reduced P. perfoliata percent cover in 2009 and 2010, and peak seed cluster production in 2010, compared to the insecticide ? no seed control treatment. Persicaria perfoliata final dry biomass was reduced by 75% in 2010 and by 57% in 2011 in the weevils plus seed treatment compared to the control, with weevils having the greatest effect in 2010 and the seed treatment having the greatest impact in 2011. Results suggest an additive effect of biocontrol and seeding in suppressing P. perfoliata. Seeded treatments also developed the highest native plant species richness and diversity, comprised of spontaneous recolonization in addition to species from the seed mix. Results support the use of integrated management of this invasive weed, with suppression through biological control and native revegetation together helping prevent reinvasion while restoring native plant biodiversity.  相似文献   
996.
Seeds of Indian ricegrass (Achnatherum hymenoides), a native bunchgrass common to sandy soils on arid western rangelands, are naturally dispersed by seed‐caching rodent species, particularly Dipodomys spp. (kangaroo rats). These animals cache large quantities of seeds when mature seeds are available on or beneath plants and recover most of their caches for consumption during the remainder of the year. Unrecovered seeds in caches account for the vast majority of Indian ricegrass seedling recruitment. We applied three different densities of white millet (Panicum miliaceum) seeds as “diversionary foods” to plots at three Great Basin study sites in an attempt to reduce rodents' over‐winter cache recovery so that more Indian ricegrass seeds would remain in soil seedbanks and potentially establish new seedlings. One year after diversionary seed application, a moderate level of Indian ricegrass seedling recruitment occurred at two of our study sites in western Nevada, although there was no recruitment at the third site in eastern California. At both Nevada sites, the number of Indian ricegrass seedlings sampled along transects was significantly greater on all plots treated with diversionary seeds than on non‐seeded control plots. However, the density of diversionary seeds applied to plots had a marginally non‐significant effect on seedling recruitment, and it was not correlated with recruitment patterns among plots. Results suggest that application of a diversionary seed type that is preferred by seed‐caching rodents provides a promising passive restoration strategy for target plant species that are dispersed by these rodents.  相似文献   
997.
Evolutionary dynamics of integrative traits such as phenology are predicted to be critically important to range expansion and invasion success, yet there are few empirical examples of such phenomena. In this study, we used multiple common gardens to examine the evolutionary significance of latitudinal variation in phenology of a widespread invasive species, the Asian short‐day flowering annual grass Microstegium vimineum. In environmentally controlled growth chambers, we grew plants from seeds collected from multiple latitudes across the species' invasive range. Flowering time and biomass were both strongly correlated with the latitude of population origin such that populations collected from more northern latitudes flowered significantly earlier and at lower biomass than populations from southern locations. We suggest that this pattern may be the result of rapid adaptive evolution of phenology over a period of less than one hundred years and that such changes have likely promoted the northward range expansion of this species. We note that possible barriers to gene flow, including bottlenecks and inbreeding, have apparently not forestalled evolutionary processes for this plant. Furthermore, we hypothesize that evolution of phenology may be a widespread and potentially essential process during range expansion for many invasive plant species.  相似文献   
998.
Hybridization between incipient species is more likely to produce sterile or inviable F1 offspring in the heterogametic (XY or ZW) sex than in the homogametic (XX or ZZ) sex, a phenomenon known as Haldane's rule. Population dynamics associated with Haldane's rule may play an important role in early speciation of sexually reproducing organisms. The dynamics of the hybrid zone maintained by incomplete hybrid inferiority (sterility/inviability) in the heterogametic sex (a ‘weak’ Haldane's rule) caused by a Bateson–Dobzhansky–Muller incompatibility was modelled. The influences and interplays of the strengths of incompatibility, dispersal, density‐dependent regulation (DDR) and local adaptation of incompatible alleles in a scenario of short‐range dispersal (the stepping‐stone model) were examined. It was found that a partial heterogametic hybrid incompatibility could efficiently impede gene flow and maintain characteristic clinal noncoincidence and discordance of alleles. Density‐dependent regulation appears to be an important factor affecting hybrid zone dynamics: it can effectively skew the effects of the partial incompatibility and dispersal as measured by effective dispersal, clinal structures and density depression. Unexpectedly, local adaptation of incompatible alleles in the parental populations, which would be critical for the establishment of the incompatibility, exerts little effect on hybrid zone dynamics. These results strongly support the plausibility of the adaptive origin of hybrid incompatibility and ecological speciation: an adaptive mutation, if it confers a marginal fitness advantage in the local population and happens to cause epistatic inferiority in hybrids, could efficiently drive further genetic divergence that may result in the gene becoming an evolutionary hotspot.  相似文献   
999.
The evolution of social traits may not only depend on but also change the social structure of the population. In particular, the evolution of pairwise cooperation, such as biparental care, depends on the pair‐matching distribution of the population, and the latter often emerges as a collective outcome of individual pair‐bonding traits, which are also under selection. Here, we develop an analytical model and individual‐based simulations to study the coevolution of long‐term pair bonds and cooperation in parental care, where partners play a Snowdrift game in each breeding season. We illustrate that long‐term pair bonds may coevolve with cooperation when bonding cost is below a threshold. As long‐term pair bonds lead to assortative interactions through pair‐matching dynamics, they may promote the prevalence of cooperation. In addition to the pay‐off matrix of a single game, the evolutionarily stable equilibrium also depends on bonding cost and accidental divorce rate, and it is determined by a form of balancing selection because the benefit from pair‐bond maintenance diminishes as the frequency of cooperators increases. Our findings highlight the importance of ecological factors affecting social bonding cost and stability in understanding the coevolution of social behaviour and social structures, which may lead to the diversity of biological social systems.  相似文献   
1000.

A circadian rhythm of activity is demonstrated in single neurons of Nephrops norvegicus (L.). Eyestalk extracts depress neural and locomotor activity. Entrainment of rhythmicity is achieved by the environmental light cycle, apparently acting through the eye.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号